Related Product 1: - Please select Product -
Related Product 2: - Please select Product -
Related Product 3: - Please select Product -
Related Product 4: - Please select Product -
Related Product 5: - Please select Product -
Related Product 6: - Please select Product -
Related Product 7: - Please select Product -
Related Product 8: - Please select Product -

"Is it faulty when a fanless industrial PC feels hot to the touch?" In general, we're used to the slight warmth of a laptop or home PC, so when we touch the heatsink of a fanless industrial PC in operation, our immediate concern is whether it's overheating or malfunctioning.

In fact, the hot to touch heatsink does not mean it is malfunctioning but rather that the fanless industrial PC's passive thermal design is working. To operate stably for long periods in harsh environments, fanless industrial PCs have a completely different thermal philosophy than home PCs. Thermal design is the key to ensuring system reliability. This article will delve into why fanless industrial PCs "feel hot to the touch" and reveal the thermal management technologies behind them.


Fanless Industrial PC vs. Home PC: The Main Difference in Thermal Design Home PC: Active Cooling

  • Uses fans to draw heat away from hot components like the CPU and GPU
  • Pros: High cooling efficiency.
  • Cons: Fans cannot operate in dusty, high-temperature, humid, or high-vibration industrial environments, as they may accumulate dust and result in damage or failure, leading to system overheating and shutdown.

Fanless Industrial PC: Fanless Passive Cooling

  • Relies on thermal materials, aluminum enclosure, heatsink fins, and heat pipes to conduct heat to the surface for dissipation.
  • Pros: Completely eliminates fans (point-of-failure), to offer high stability, maintenance-free, dust- and vibration-resistant, and extend lifespan.
  • Cons: The surface temperature of the heatsink/ enclosure is higher and may feel "hot" to the touch.

Why Does a Passively Cooled Heatsink Get Hot?

In electronics, heat is the number one threat to component lifespan. High temperatures accelerate the aging of electronic parts, loosen solder joints, and even compromise data integrity.

The cooling principle employed by fanless industrial PCs is to conduct the heat generated by components to the outer surface of the heatsink/ enclosure, which the heat can then dissipate. Therefore, if a fanless industrial PC's heatsink/ enclosure is hot to the touch, it actually means it has effectively drawn heat away from critical components, ensuring system stability.


Three Common Passive Cooling Technologies in Fanless Industrial PCs

1. High-Efficiency Thermal Materials

  • Industrial-grade thermal paste and thermal pads fill tiny gaps between the CPU/GPU and the heatsink.
  • Long-lasting and resistant to degradation, they ensure stable cooling efficiency even under long-term high-temperature operation.

2. Aluminum Enclosure with Heatsink Fins

  • The full aluminum enclosure itself acts as a large heatsink.
  • Special fin structures increase the surface area to rapidly dissipate heat.

3. Heat Pipe Technology

  • Used in high-performance or space-constrained models.
  • Utilizes the principle of phase change to quickly transfer heat away from the heat source, significantly boosting cooling efficiency.

Neousys Technology's Fanless Thermal Design

Neousys Technology's Fanless Thermal Design

In response to harsh industrial environments, Neousys fanless industrial PCs’ thermal design utilizes aluminum casing + heatsink fins + thermal materials. The layout is optimized at the mainboard design stage to evenly distribute hot components across the PCB to help achieve heat-soak equilibrium.

Based on test data, at an ambient temperature of 70°C, the aluminum heatsink can reached a maximum surface temperature of 88.8°C with infrared thermography showing uniform temperature distribution across the heatsink, suggesting the strategic placement of components effectively avoided heat-soaking in concentrated areas.

Neousys Technology's Fanless Thermal Design

For installation within enclosures, Neousys' fanless flattop computers, FT series, their heatsink is mounted directly onto the enclosure wall surface with a thermal pad, conducting heat onto the outside of the enclosure. This design serves two purposes, one, it prevents heat buildup inside the enclosure, and two, without the heatsink fins, the system is smaller in dimensions, making it ideal for confined or enclosed systems.


Conclusion: Hot to the Touch Means Heat Conducted to Heatsink

When your fanless industrial PC feels hot, it means heat generated by components are being conducted onto the surface of the heatsink. It is protecting itself, ensuring stable long-term operations in harsh environments.

From advanced thermal interface materials and aluminum fins to heat pipe technology, these thermal designs are engineered to sustain fanless industrial PC high-performance and longevity of fanless industrial PCs, even under harsh environmental conditions.


Frequently Asked Questions (FAQ)

  • Is it normal for a fanless industrial PC to feel hot to the touch?
    Yes, it is. Fanless industrial PCs use a fanless passive cooling design that conducts the component generated heat to the heatsink/ enclosure. Therefore, a higher surface temperature is normal.

  • Why don't fanless industrial PCs use fans for cooling?
    Industrial environments often have dust, high temperatures, moisture, and vibrations. Fans are prone to accumulating dust or damaged, leading to overheating. A fanless design avoids this point-of-failure by utilizing thermal materials, aluminum casing, heatsink fins, and heat pipes for passive cooling.

  • What is a normal heatsink/ enclosure temperature for a fanless industrial PC?
    Depending on the environment and workload, the surface temperature of a fanless industrial PC's aluminum casing is typically between 50°C and 90°C. Even if the heatsink/ enclosure feels hot to the touch, as long as it operates within the specified temperature range, it's considered normal.

Related Product 1: - Please select Product -
Related Product 2: - Please select Product -
Related Product 3: - Please select Product -
Related Product 4: - Please select Product -
Related Product 5: - Please select Product -
Related Product 6: - Please select Product -
Related Product 7: - Please select Product -
Related Product 8: - Please select Product -

Overview

The evolution of industrial Gigabit Ethernet cards combining Power over Ethernet (PoE) functionality has mimicked the growing demand

The evolution of industrial Gigabit Ethernet cards combining Power over Ethernet (PoE) functionality has mimicked the growing demand for higher bandwidth, increased power delivery, and rugged reliability in modern industrial applications. Initially, 1Gb Ethernet PoE cards dominated the landscape, offering up to 15.4W per port under IEEE 802.3af (PoE) and later up to 30W per port with IEEE 802.3at (PoE+). These solutions served well for powering peripheral devices at the time, such as Gigabit IP cameras (requiring 3W to 5W), PoE-powered panel PCs, etc.

With the emergence of bandwidth-intensive applications, such as high-resolution video surveillance, AI-powered edge devices, and industrial automation, came the need for faster data rates and higher power delivery. This led to the development of 2.5Gb and 5Gb Ethernet PoE cards compliant with NBASE-T standards, maintaining backward compatibility with Cat5e cabling while improving throughput. These intermediate speeds enabled smoother data handling at the cost of generating excessive heat, but without the need to overhaul infrastructures. As a result, efficient thermal management has emerged as a critical consideration in the design and operation of high-speed Ethernet connectivity.

The integration of 10Gb Ethernet for ultra-fast data transfer and IEEE 802.3bt Type 4 (PoE++) for power delivery, offering up to 90W per port, represents a significant advancement in supporting modern edge AI applications and ultra-high-resolution cameras. This combination meets the bandwidth and power demands of next-generation devices.


Challenges of Deploying 10Gb PoE++ Cards in Embedded Systems, in the Field

When 10Gb PoE++ industrial add-on cards are installed into industrial embedded computers, they unlock powerful new capabilities for a range of high-performance edge applications, particularly in intelligent factory, smart city and public infrastructure deployments. These add-on cards provide both high-speed data transmission and robust power delivery over a single Ethernet cable, streamlining installation and reducing the need for separate power lines in remote or difficult-to-access areas. This makes them ideal for outdoor high-speed WiFi 7/ 6 access points, PTZ cameras, AI-powered PTZ precision cameras, smart light poles, and kiosk information stations. In these scenarios, reliable power and high-throughput data are critical. At the same time, these application deployments pose thermal management challenges during operation due to environmental conditions, and both fast data throughput and power delivery will result in excess heat generation. Therefore, most add-on cards rarely have both 10Gb and PoE++, and will only have one or the other advanced specification to minimize the heat generated, to sustain operations.

For example, AI-enabled PTZ cameras deployed in applications such as traffic monitoring or port security often demand up to 51 watts of power via PoE++ (IEEE 802.3bt) and require a sustained data throughput of at least 1 Gbps to enable real-time video streaming, object recognition, and AI inference at the edge. However, the high-performance demands of these cameras also result in elevated power and thermal loads. In harsh environment conditions, there have been instances of PTZ camera failures caused by overheating, where the PoE card was unable to maintain continuous power delivery or data throughput. Such thermal-induced incidents can lead not only to device shutdowns, but also data loss and packet drops, compromising both system reliability and real-time operations.

In addition to performance, the card's durability is also essential. Installed in embedded systems that are often deployed in exposed environments such as roadside, intersections, harbor ports, or public spaces, they must operate reliably in a wide range of environmental conditions. Therefore, PoE cards used in these embedded computers must be capable of withstanding wide range temperatures, especially for high data throughput and sustained power output operations.

Power-hungry devices such as pan-tilt-zoom (PTZ) cameras, 8K ultra-high-resolution cameras (typically requiring up to 50W), wireless access points, and embedded industrial PCs can all be supported through a single Ethernet cable. PoE++ simplifies installation with streamlined cabling and efficient power management—key advantages for high-density smart city deployments across roadsides, seaports, industrial zones, agriculture fields, and mining operations.

The evolution of industrial Gigabit Ethernet cards combining Power over Ethernet (PoE) functionality has mimicked the growing demand

Neousys' Industrial Wide Temperature 10GbE PoE++ Card

Neousys Technology offers a robust range of industrial-grade PCIe add-on cards engineered to meet the stringent demands of harsh and mission-critical environments, including Gigabit, 2.5Gb and 10Gb cards with or without PoE. When released, the 10Gb high-speed Ethernet cards with advanced PoE++ IEEE 802.3bt, were one of the first 10Gb PoE++ cards specifically designed for industrial operations. The card enhanced system performance by enabling up to 10Gb of data throughput and up to 90W per port power delivery, crucial for smart city and intelligent factory applications such as machine vision, public safety monitoring, and industrial automation.

What sets the Neousys' 10Gb PoE++ card apart is its wide-temperature operation capability, withstanding extreme ambient temperatures ranging from -25°C to 70°C. Its strategic component placement design ensures continuous operation in extreme weather, from scorching summer heat to freezing winter temperatures, making it particularly suitable for deployment in outdoor applications such as roadside infrastructure, and remote industrial locations where environmental control is limited.

The 10Gb Ethernet interface can support multiple high-resolution data streams simultaneously or high-power devices such as outdoor WiFi 7 AP, ideal for real-time analytics, public safety monitoring, and large-scale sensor integration across smart city platforms. In addition, the ability to supply up to 90W per port to power devices also simplifies network deployment by reducing infrastructure complexity while lowering total cost of ownership.

The evolution of industrial Gigabit Ethernet cards combining Power over Ethernet (PoE) functionality has mimicked the growing demand

Engineered for industrial computers and applications, the card incorporates rugged and highly-reliable components to ensure stable and consistent performance in demanding and thermal volatile environments. Its low-profile, plug-and-play PCIe Gen3 x4 interface enables seamless integration across a wide range of industrial PC systems, simplifying deployment complexity while reducing system downtime. The card supports GigE Vision 3.0 cameras with RDMA (Remote Direct Memory Access) technology, which significantly enhances data transfer efficiency by bypassing traditional CPU-intensive packet handling and memory copy operations. This results in up to 90% reduction in CPU utilization, allowing more resources to be dedicated to real-time processing tasks such as image analysis and AI inference. For industries requiring optimized performance, power distribution, and enhanced reliability in harsh environments, Neousys 10Gb PoE++ card is an ideal future-ready solution capable of sustaining high-throughput and low-latency connections for modern applications.

By integrating Neousys 10Gb PoE++ card into your embedded computer, it enables a compact yet highly capable solution for powering and networking intelligent devices in mission-critical indoor/ outdoor applications. Its combination of high-power output, fast data transmission, and industrial-grade reliability ensures your solution meets the rigorous demands of next-generation smart infrastructure.

Related Product 1: - Please select Product -
Related Product 2: - Please select Product -
Related Product 3: - Please select Product -
Related Product 4: - Please select Product -
Related Product 5: - Please select Product -
Related Product 6: - Please select Product -
Related Product 7: - Please select Product -
Related Product 8: - Please select Product -

加速がはずむ今日の産業界では、産業コンピューターに寄せられる高性能CPUの要件がかつてない水準に高まっています。業界がデジタル変革、エッジコンピューティング、AI駆動の自動化を受け入れる中、AI対応の性能レベルに達したプロセッサーは欠かせなくなっています。


産業コンピューターでCPUの高性能要件を加速させている主な流れ:

  • AIと機械学習の統合
    産業アプリケーションは予測メンテナンス、品質検査、工程最適化のため、ますますAIと機械学習に依存しています。これらのタスクは、Intel Core Ultra 200シリーズに搭載されるようなAI NPU(ニューラルプロセッシングユニット)などのAIアクセラレーションを内蔵するプロセッサーを必要とします。エッジで直接AI推論を処理することで、これらのプロセッサーは遅延を最小化してクラウドコンピューティングへの依存を減らします。
  • エッジコンピューティングの普及
    エッジコンピューティングは、中央配置のクラウドコンピューターからローカルデバイスへデータ処理を移行させています。産業コンピューターは、IoTセンサー、カメラ、機械が生成する膨大なデータをリアルタイムに処理しなければならなくなっています。
  • 高解像度画像とビデオ処理
    製造現場での自動光学検査(AOI)からセキュリティシステムでの顔認識まで、産業アプリケーションは高解像度の画像とビデオの処理を要求しています。高度な演算能力とPCIe 5.0などの高速インターフェース対応を備える高性能CPUは、GPUとフレームグラバーをシームレスに統合して、広帯域画像データを滑らかに処理できるようにします。
  • マルチタスク要件の増加
    最新の産業環境では、データ取得、機械制御、リアルタイム分析など複数のアプリケーションを同時に実行できるシステムが要求されます。複雑な演算ではCPUがリアルタイムに複数のタスクを処理できなければならず、大容量のメモリーすらサポートして、性能を犠牲にせず同時実行できなければなりません。


産業コンピューターでの高性能CPUの課題

  • 放熱管理
    CPUが高性能化するにつれ、マルチタスク演算時の放熱も増します。効率的に放熱できなければ、過度の熱がシステムの安定性、信頼性、さらには安全性すら脅かし、最終的には稼働時間を低下させます。
  • 電力設計
    高性能CPUは消費電力も増します。追加I/Oデバイスからの電力要件と合わせ、安定した電源を設計することは簡単ではありません。産業コンピューターは、実装環境での電圧安定性が一定しないため、広範囲DC入力にも対応しなければなりません。
  • 過酷な動作条件
    エッジコンピューティングが普及したことで、狭い空間、振動、衝撃、湿度、塩霧などの厳しい環境条件に産業コンピューターが直面するエッジへ、高度なアプリケーションを移行させています。

Neousysに流れる堅牢性の伝統と、耐久性と信頼性があるファンレスな産業コンピューターを提供するために当社が課題を克服した様子をご覧ください。

  • 産業コンピューターの安定性に放熱が重要な理由 (詳細を見る)
  • Neousysファンレスコンピューターのメリットとは (詳細を見る)
  • • 狭い空間でのファンレスコンピューターを一新s (詳細を見る)


結論

T産業アプリケーションの複雑さが増し、エッジコンピューティングとAIへの移行が進んでおり、産業コンピューターで高性能CPUの必要性が強調されています。こうした高度なプロセッサーを採用すれば、産業は効率性、信頼性、拡張性を高め、よりスマートで自動化されたアプリケーションへの道を開けます。



Related Product 1: - Please select Product -
Related Product 2: - Please select Product -
Related Product 3: - Please select Product -
Related Product 4: - Please select Product -
Related Product 5: - Please select Product -
Related Product 6: - Please select Product -
Related Product 7: - Please select Product -
Related Product 8: - Please select Product -

Industrial Computers in Harsh Environments

How can equipment maintain stable operation in high-temperature factories, humid coastal areas, or vehicles subjected to intense vibrations? As edge computing applications expand, industrial computers are becoming the core pillars of application scenarios. However, these devices must overcome challenges such as high temperatures, humidity, salinity, and vibration. In this article, we will analyze how industrial computers address these challenges and provide guidance for you to choose the right solution.


How do industrial computers deal with harsh industrial conditions?

  • High-Temperature:
    High temperatures can cause electronic components to overheat, leading to system throttling, accelerated aging, and even failure. To address this challenge, industrial computer manufacturers adopt wide-temperature designs, ensuring that equipment can withstand extreme temperatures from -40°C to 70°C. In addition, the application of fanless structures and high-efficiency thermal conductive materials effectively improves heat dissipation efficiency and prevents overheating problems.
  • Humidity:
    High-humidity environments can easily cause short circuits and corrosion of metal components. In addition to moisture-proof coatings providing an extra protective layer for internal circuits, sealed housing designs further prevent moisture from entering, ensuring stable operation of the equipment. Industrial computers designed to meet IP ratings can be deployed into environments with high humidity or even underwater, ensuring stable operation in their respective environments.
  • Salinity/ Corrosion:
    In applications close to coastal sealine or on ships, high-salt content environments accelerate the oxidation and corrosion of metal components. To address this, industrial computers may apply extra coatings or use stainless steel housings to improve corrosion resistance at the material level and extend service life.
  • Vibration and Shoc:
    Vibration and shock are inevitable in industrial automation and transportation. Sensitive components such as hard drives and connectors may be damaged by vibration. To counter this, industrial computers can replace traditional hard drives with solid-state drives (SSDs) and adopt shock-resistant structural designs to ensure stable operation under high-vibration conditions. Taking this design to another level, Neousys Technology's patented anti-vibration design can reduce the impact of high and low-frequency vibrations on the system in automotive environments. The design even extends to add-on GPU cards, securing the card in-place and prevent possible damages caused by vibration in in-vehicle environments.
  • Dust and Airborne Particles:
    Dust can enter the equipment via fan vents and connector openings to damage circuits or obstruct the cooling system. Fanless design is one of the most effective solutions for dealing with dust, and in addition, housings that meet IP65 or higher protection ratings also provide excellent dustproof performance.

  • Industrial Computers Designed to Thrive in Industrial Environments

    Compared to general-purpose computers, industrial computers have significant advantages in terms of durability, stability, and customization capabilities. Through rigorous testing and certification that meet international standards, industrial computers can meet the needs of diverse applications.

    Neousys Technology focuses on the design of rugged embedded computers, providing high-quality products with wide temperature operation, vibration resistance, and international certifications such as EN50155, EN45545, and UL to accelerate project implementation while ensuring safety and reliability.


    Conclusion

    When facing extreme environments, choosing industrial computers with excellent durability is crucial. Through innovative technologies such as wide temperature, moisture-proof, shockproof, and dustproof, industrial computers can easily cope with challenges such as high temperature, humidity, salinity, and vibration to provide operation stability and efficiency.


    Related Product 1: - Please select Product -
    Related Product 2: - Please select Product -
    Related Product 3: - Please select Product -
    Related Product 4: - Please select Product -
    Related Product 5: - Please select Product -
    Related Product 6: - Please select Product -
    Related Product 7: - Please select Product -
    Related Product 8: - Please select Product -

    産業自動化:安定性こそが鍵

    重要なアプリケーションと常時稼働が求められる運用にとって、生産の効率性を上げ、コストを削減するために、設備の安定性を保つことが不可欠です。しかし、PCI Express、USB、その他のインターフェースをベースとする従来型のシングルボードコンピュータや4Uの組込みコンピュータは、温度、埃、振動などといった環境要因による課題に直面しがちです。これらの問題は故障率の増加、稼働時間の低下、不可視の生産コストなどの原因となります。


    ファンレスコンピュータ:自動化の最適なパートナー

    ファンレスコンピューターは、こうした問題へ新たなソリューションを提供します。高度な放熱設計や高品質コンポーネントを通じて、ファンに依存せずに効率よく放熱するため、安定した高信頼性の運用を実現できます。

    工場自動化のシステムインテグレーターやエンドユーザーへ、ファンレスコンピューターは複数のメリットを提供します:


    1.信頼性と耐久性

    2.効率的な放熱管理

    3.環境への適応能力

    • 広範囲温度:
      ファンレスコンピューターは通常、広範囲温度で動作するため、高温や低温などの極端な環境に適しており、安定動作を保証します。
    • SuperCAP保護を搭載した広範囲DC入力:
      8V~48Vの広範囲DC入力に対応するシステムは、様々な産業条件へ実装できます。Neousysの特許取得済SuperCAPも備わり、接続したシステムを電源変動や突発的な停電などがから確実に保護します。

    4.メンテナンス費用の低減

    • 高信頼性:
      可動部品がないため、破損も減ります。
    • メンテナンス頻度の低下:
      ファンレス設計のため、ファンの清掃や交換が不要になり、メンテナンスの労力やコストを削減します。
    • 稼働時間の向上:
      信頼性が高まるために休止時間も減り、生産効率が上がります。

    5.効率性

    6.安全性

    • 火花の危険なし:
      ファンレスコンピューターはファンの故障により発生する火花の危険性を無くし、システムの安全性を高めます。

    結論

    自動化アプリケーションでは、信頼性、耐久性、環境への適応性を持つファンレスコンピューターの人気が高まっています。初期投資は多少高くつくことがありますが、信頼性の改善、メンテナンス費用の低減、生産性の向上といった長期的なメリットを持つファンレスコンピューターは、将来的に十分価値のある投資となります。



    Related Product 1: - Please select Product -
    Related Product 2: - Please select Product -
    Related Product 3: - Please select Product -
    Related Product 4: - Please select Product -
    Related Product 5: - Please select Product -
    Related Product 6: - Please select Product -
    Related Product 7: - Please select Product -
    Related Product 8: - Please select Product -

    エッジコンピューティングが自動車、船舶、ドローン、半導体装置などのデバイスに移行すると、過酷な環境に置かれることがよくあります。精密な部品を保護するため、産業コンピュータと機器は通常、密閉型または防水性のエンクロージャに納められます。ただし、これにより、放熱という新たな課題を生みます。

    事前に設置済みのファンなど、従来の冷却方法は、こうしたエンクロージャや防水ケースの空間が限られるため、実用的ではないことがよくあります。このため、空間の最適な利用を優先するインテグレーターやメーカーにとって、大きな課題がのしかかります。


    2-in-1ソリューションの実現

    理想的には、こうした空間の限られるエンクロージャ内でも環境に対する保護と放熱の両方をまかなえる冷却ソリューションが必要です。Neousysはこの点について、固定観念にとらわれない方法を編み出しました。

    ヒートシンクを大型の冷却媒体に取り付けてはどうだろうか?冷却面積を広げつつ、コンピュータのサイズを縮小できます。Neousysのフラットトップヒートシンク設計は、産業コンピュータの上に乗せるアクティブ冷却のフィンを大型のヒートシンクで置き換え、それをキャビネットまたはボックスへ直接取り付けています。キャビネット表面に貼りつくため、冷却効果が最大化されます。

    この設計は性能仕様を満たしつつ、広範な動作温度範囲に対応するため、密閉されたボックス内での継続的な温度上昇を防ぎます。また、Neousysの実績によると、フラットトップ設計は、同グレードの製品と比較し、産業コンピュータの高さを最大28%減らすことができます。この画期的な設計は機械の外形寸法を縮小でき、狭い空間でのキャビネット設置や自動化設備に理想的なソリューションとなっています。


    導入事例

    過酷な産業環境における自動検査:
    過酷な環境での確実なビジョン検査のために設計されたNeousysのフラットトップヒートシンク付きキャビネット内IPCをご覧ください。その冷却性能を最適化し、スペースを節約し、デバイス配置の柔軟性を向上させる方法をご紹介します。(詳細はこちら)


    推奨されるフラットトップヒートシンク産業コンピュータ

    Neousysは演算性能別に、4種類のフラットトップヒートシンク産業コンピュータを提供します。

    低消費電力 高性能 エッジAIコンピューティング 低SWaP
    Intel® Alder Lake超小型組込みコンピュータ 高性能 Intel®第14/13/12世代小型ファンレスコンピュータ NVIDIA® Jetson Orin™ NXエッジAIコンピュータ NVIDIA® Orin™ NXで駆動される低SWaP AIミッションコンピュータ


    FAQ

    Q1:フラットトップ産業コンピュータをキャビネットへ取り付ける方法とは

    キャビネットとフラットトップヒートシンクを直接固定し、確実に密着させるためのネジ穴を予備で設けています。詳細はお問い合わせください。


    Q2:どんな素材のキャビネットやボックスへ固定できますか?冷却性能はどの程度ですか?

    鋼鉄/アルミ製のプレートなど、表面で熱を伝導できる金属素材へ固定することが推奨されます。冷却性能は密着する素材、面積、設置環境(エアフローの有無など)によって左右されます。鋼鉄/アルミ製のプレートを用いて徹底したテストを行った結果、コンピュータは60~65度で100%の性能を発揮できます。詳細はお問い合わせください。



    ビデオを見る




    Related Product 1: Nuvo-9000 Series
    Related Product 2: Nuvo-9501 Series
    Related Product 3: Nuvo-9531 Series
    Related Product 4: Nuvo-9160GC Series
    Related Product 5: Nuvo-2600 Series
    Related Product 6: Nuvo-8111
    Related Product 7: Nuvo-8000 Series
    Related Product 8: - Please select Product -

    Introduction

    With the continuous advancement of computer performance, heat generation has also increased significantly. While traditional fan cooling methods can effectively lower computer temperatures, they introduce dust and debris, reducing computer operation reliability and even affecting lifespan and uptime. As material manufacturing technologies progress, fanless industrial computer cooling technologies have developed, significantly enhancing computer performance and reliability, becoming one of the common cooling methods in industrial computer design.


    Fan-cooled vs fanless industrial computers

    Fan cooling is the most common computer cooling method. Fans remove heat from the heatsink, expel hot air from within the computer, and draw in cool air, achieving airflow and heat dissipation.

    Type Fan Cooling Fanless Cooling
    Structure Simple, low cost Complex, higher cost
    Dust/ Debris Prone to dust accumulation Simple
    Maintenance Frequent(dust/ debris cleaning, fan maintenance) Minimum(near zero maintenance)
    Application Range Application must be habitable and provide easy access to computer due to maintenance requirements Application can be harsh environments and confined space deployment
    Noise Moderate to loud Near silent

    What are the advantages of Fanless Industrial Computers

    Compared to fan-cooled industrial computers, fanless industrial computers use alternative cooling methods with strategic component placement and increased-size heatsinks being the most common. This effectively avoids the heat-soak, dust and debris problems caused by fan-cooled industrial computers.

    • Dust and debris: The fanless design of the entire unit minimizes dust, debris, and other foreign objects in the air from entering the computer, reducing damage or affecting heat dissipation.
    • Reliability: Since fanless industrial computers do not use fans, they are less prone to dust accumulation or reduced heat dissipation efficiency. Therefore, they have a lower failure rate, meeting the requirements for 24/7 operation.
    • Low power consumption: Without active air cooling, the design must consider power consumption and minimizing heat generation for a lower overall power expenditure and deployment costs.
    • Compact size: Fanless industrial computers do not need to reserve space for air circulation so the overall size can be more compact. Therefore, they are more suitable for installation in narrow spaces, such as cabinets, carriages, integrated automation equipment, or narrow gaps.
    • Near silent operation: The absence of fans makes fanless industrial computers operate quietly. Making them suitable for deployment in areas that require silence such as in hospitals, and libraries.
    • Maintenance: Fanless industrial computers do not require regular cleaning (fan and system), significantly reducing maintenance (downtime) and improving convenience.

    Overall, adopting fanless industrial computers can reduce downtime, extend system lifespan, and lower operational costs. Therefore, they are more suitable for deployment in harsh environments to meet high-reliability application requirements.



    FAQ

    Q1: Will fanless industrial computers overheat?

    Any computer can overheat, and overheating can lead to decreased system performance and even abnormal shutdowns. Therefore, heat dissipation design is particularly important. Special considerations go into power supplies, components, and other heat-generating parts, as well as the overall structure for fanless industrial computers. At Neousys, we use dedicated from-the-ground-up system design to ensure the stable operation of fanless industrial computers to achieve true wide operating temperature range.


    Q2: Why are fanless industrial computers recommended for industrial applications?

    Industrial applications are mostly in harsh environments such as factories, buses, and trains. System installation are often space-constrained and require 24/7 stable operation. Fanless industrial computers are often considered for their reliability, and ease of installation into tight spaces.


    Q3: Which industries use fanless industrial computers?

    Most industrial application customers will use fanless industrial computers for its near-zero maintenance, compactness, and reliability. They can be found in industries such as semiconductor manufacturing, automobile manufacturing, public transportation, energy management, smart agriculture, smart cities, etc.

    For customers pursuing stable and reliable systems, we strongly recommend using fanless industrial computers. If your operating environment has drastic temperature changes, we would recommend using fanless industrial computers with wide temperature operating range.


    Q4: Can fanless industrial computers be placed in semi-outdoor areas?

    In addition to dust, you need to confirm the temperature, humidity, salinity, vibration, chemical concentration, etc. and choose an industrial computer specification that suits you. If necessary, we recommend choosing computers with IP66/IP67/IP69K ratings for extra environmental condition protection. You can refer to the Neousys SEMIL series (IP67/IP69K rated) or AWP series (IP66 rated) to meet your application’s semi-outdoor environment conditions. We recommend that you confirm the conditions at the deployment site before purchasing the industrial computer.


    Related Product 1: - Please select Product -
    Related Product 2: - Please select Product -
    Related Product 3: - Please select Product -
    Related Product 4: - Please select Product -
    Related Product 5: - Please select Product -
    Related Product 6: - Please select Product -
    Related Product 7: - Please select Product -
    Related Product 8: - Please select Product -

    過酷な環境でAIアプリケーションを展開可能

    Neousysの防水コンピュータは、IP69KからIP66定格まで、様々なグレードで提供されます。軍需グレードに準ずる耐久性を誇る堅牢なSEMILシリーズから、防水性のAWPシリーズまで、過酷な環境で性能を発揮できるよう設計されています。コンピュータは高度な熱管理機能を備えて強力な演算処理性能を誇ります。M12コネクターを使用した強化ステンレススチール設計により、-40°C~70°Cの極端な温度でも中断なく動作します。


    Neousysが提供するIP69K/ 67/ 66定格の防水コンピュータ

    Neousys IP69K/ 67/ 66-rated Waterproof Rugged Computers



    製品の特徴

    Robust Construction
    堅牢な構造
    耐腐食性のステンレススチールとアルミ製シャーシを特徴とする当社のコンピュータは、環境内に存在する湿気、塩分、その他の汚染物などに耐えられるよう、完全密閉型となっています。

    Powerful Processing
    強力な演算処理
    Intel® Core™プロセッサー、NVIDIA® GPU、最大64 GBのDDR5メモリーで駆動されるシステムは、厳しい環境でも傑出した演算性能を発揮します。

    Rugged Connectivity
    堅牢な接続機能
    イーサネット、USB、PoE+など、各種のM12 I/Oポートを搭載します。多彩な接続機能を通じ、産業システムへシームレスに統合できます。

    Total Cost of Ownership
    相所有コスト
    低価格なIP66定格の防水システムは、性能や信頼性を犠牲にせず、産業コンピューティングの要件と予算を満足できるよう最適化されています。



    IP69K定格の超堅牢性コンピュータ

    SEMIL-2000 SEMIL-2000GC
    SEMIL-2000
     ▪  Intel® 14th/ 13th/ 12th-Gen Core™ CPU
     ▪  2U 19"/2ラックマウントのフォームファクタ
    SEMIL-2000GC
     ▪  NVIDIA® L4 GPU
     ▪  Intel® 14th/ 13th/ 12th-Gen Core™ CPU


    IP67定格の超堅牢性コンピュータ

    SEMIL-1700 SEMIL-1700GC
    SEMIL-1700
     ▪  Intel® Xeon® Eまたは第9世代/第8世代Core™ CPU
     ▪  特許取得済SuperCAPをベースにした無停電電源バックアップ
    SEMIL-1700GC
     ▪  NVIDIA® RTX A2000 GPU
     ▪  Intel® Xeon® Eまたは第9世代/第8世代Core™ CPU


    IP66定格の低価格な防水コンピュータ

    Nuvo-9650AWP POC-465AWP NRU-230V-AWP/ NRU-240S-AWP
    Nuvo-9650AWP
     ▪  Intel® 13th/ 12th-Gen Core™ CPU
     ▪  8V~48VDC入力、イグニッションパワーコントロール内蔵
    POC-465AWP
     ▪  Intel® Atom® x6425E CPU
     ▪  8V~35VのDC入力、イグニッションパワーコントロール内蔵
    NRU-230V-AWP/ NRU-240S-AWP
     ▪  NVIDIA® Jetson AGX Orin™ SoMで駆動
     ▪  FAKRA Zコネクター経由でGMSL2車載カメラ x8をサポート




    アプリケーション

    Military & Defense

    軍需と国防

    超堅牢設計とGPUサポートを特徴とするSEMILシリーズは、無人走行車に車載して運用能力を強化でき、戦場での通信、ISR、UGVアプリケーションに理想的です。


    Mining/ Construction/ Forestry

    採掘/建設/林業

    耐衝撃/耐振動性を備えてイグニッションコントロールを内蔵しており、鉱山、建設現場、林業作業での車両へ遠隔監視と制御システムを実装する用途に理想的です。


    Agriculture/ Husbandry

    農業/畜産

    堅牢なステンレススチール構造と最適化された演算処理能力が、自律走行のトラクターや家畜管理など、精密農業と自動化をサポートします。


    Seaport/ Maritime

    港湾/海運

    完全密閉式のエンクロージャは周囲環境の汚染物を排除するため、船舶の監視、ナビゲーション、通信システムなど、海運環境での導入が可能です。


    Food & Beverage

    食品と飲料

    AI演算、PoE+、カメラのUSBポートを備えるこのシステムは、自動化された食品加工と飲料生産のラインを中断なく稼働させられます。防水性のため、周囲環境内の汚染物質にも影響を受けません。


    Oil & Energy/ Infrastructure

    石油とエネルギー/インフラ

    堅牢設計を持ちC1D2認証要求を満たす当社のシステムは、有害な環境に理想的です。不慮のシャットダウンの危険なく、システム状態を監視するために必要な耐久性と信頼性を備えており、効果的な予測メンテナンスに対応します。




    Related Product 1: POC-700 Series
    Related Product 2: POC-400 Series
    Related Product 3: POC-40 Series
    Related Product 4: POC-465AWP
    Related Product 5: POC-300 series
    Related Product 6: - Please select Product -
    Related Product 7: - Please select Product -
    Related Product 8: - Please select Product -

    When it comes to small computers, one might assume that size is the only factor to consider. However, for industrial applications or semi-outdoor environments, there are crucial features that determine whether a small computer can withstand the demanding conditions it will be subjected to. So, the question arises: How do you choose a small computer that truly meets the requirements of industrial tasks or semi-outdoor use?

    In this article, we will guide you through the process of selecting a small computer that is tailored to thrive in these challenging environments. From ruggedness and performance to temperature tolerance and waterproof capabilities, we will explore the key criteria to keep in mind. So, if you want to know how to make the right choice, read on.


    Key Takeaways:

    • Choosing a small computer for industrial applications or semi-outdoor environments requires careful consideration of specific features.
    • Compactness, robust performance, wide operating temperature range, stability, and waterproof capabilities are essential factors to look for.
    • A small industrial computer offers benefits like space efficiency, industrial-grade performance, and durability.
    • The ability to withstand wide temperature fluctuations and be resistant to water is crucial for a small computer used in semi-outdoor environments.
    • A rugged and fanless embedded computer provides enhanced durability, reliability, and reduced maintenance requirements.


    Why a Small Industrial Computer

    In today's industrial landscape, the demand for compact and durable computing solutions has grown exponentially. The need for a small industrial computer arises from the space-constrained nature of industrial settings and the specific requirements to meet the challenges of harsh environments.

    Industrial environments often have limited space, making it impractical to use traditional desktop computers. A small industrial computer, also known as a compact computer, overcomes this challenge by offering a space-saving design without compromising on performance and functionality.

    These small computers are specifically engineered to withstand the demanding conditions of industrial applications. Industrial-grade components and rugged construction ensure that they can handle extreme temperatures, vibrations, dust, and other harsh elements commonly found in industrial environments.

    "Small industrial computers are designed to provide powerful performance and long-term reliability in challenging industrial environments."

    In addition to their compact size and robust build, small industrial computers also offer a range of features tailored for industrial applications. They often include multiple connectivity options such as Ethernet, USB, and serial ports, allowing seamless integration with industrial equipment and systems.

    Furthermore, industrial computers are engineered to operate reliably in extended temperature ranges, making them suitable for both hot and cold environments. This wide temperature tolerance ensures uninterrupted performance, eliminating the risk of system failure due to temperature fluctuations.

    When it comes to operating in semi-outdoor environments, small industrial computers offer distinct advantages. Their compact and fanless design allows them to operate silently and without the need for additional ventilation, protecting against dust, moisture, and other impurities that can compromise system performance.

    In summary, small industrial computers play a crucial role in meeting the unique demands of industrial settings. Their compact size, rugged build, and specialized features make them an ideal choice for applications where space is limited, durability is essential, and performance cannot be compromised.


    Features to Consider When Choosing a Small Computer for Semi-Outdoor Use

    When choosing a small computer for semi-outdoor environments, certain features are crucial to ensure optimal performance and reliability. These features include wide temperature tolerance, waterproof capabilities, and a fanless design. Let's explore why these attributes are essential for a small computer to withstand varying weather conditions and operate reliably in semi-outdoor settings.

    Wide Temperature Tolerance

    A small computer designed for semi-outdoor use should be able to withstand extreme temperature fluctuations. Wide temperature tolerance ensures reliable operation even in harsh environments where temperatures can reach extreme highs up to 50°C during midday, or lows down to -5°C in the evening. Whether it's scorching heat or freezing cold, a small computer with wide temperature tolerance can handle it all, making it ideal for outdoor applications.

    Waterproof Capabilities

    Semi-outdoor environments are often exposed to moisture, rain, and other external elements. Therefore, it is crucial for a small computer to have waterproof capabilities. A waterproof small computer can withstand splashes, spills, and even temporary submersion, ensuring uninterrupted operation and protecting sensitive internal components from water damage.

    Fanless Design

    A fanless design is another vital feature to consider for a small computer used in semi-outdoor settings. Fanless computers are designed to dissipate heat passively, eliminating the need for traditional cooling fans. This not only ensures silent operation but also prevents the entry of dust, dirt, or other particles that could potentially damage internal components. Additionally, a fanless design helps reduce maintenance requirements and enhances the overall durability.

    By considering these features in a small computer, users can ensure that their device can withstand the challenges of semi-outdoor environments and deliver optimal performance and reliability. Whether it's for outdoor kiosks, digital signage, or industrial automation, a small computer with wide temperature tolerance, waterproof capabilities, and a fanless design is the ideal choice, regardless of the weather conditions.



    Choosing the Right Small Computer for Your Specific Needs

    When it comes to selecting a small computer for your industrial applications or semi-outdoor environments, there are several factors to consider. By understanding these considerations, you can ensure that you choose a small computer that meets your specific needs and delivers optimal performance.

    • Processing Power: Evaluate the processing power required for your tasks. Consider the complexity of your applications and the level of performance needed to handle them efficiently. Look for small computers with high-performance processors that can handle your workload effectively.
    • Connectivity Options: Assess the connectivity options available on the small computer. Consider the types of devices or equipment you need to connect to and ensure compatibility. Look for small computers with a variety of ports and interfaces to support seamless connectivity.
    • Overall Size: Take into account the physical dimensions of the small computer. Determine the available space in your industrial setting or semi-outdoor environment and choose a small computer that fits perfectly without causing any obstruction.

    Additionally, it is recommended to consider the durability and ruggedness of the small computer. Look for a mini computer that can withstand harsh conditions, vibrations, and temperature extremes often encountered in industrial environments or semi-outdoor areas. Furthermore, opt for a fanless design to eliminate the risk of dust or debris entering the system.

    Remember, selecting the right small computer is crucial for ensuring efficient operations and maximizing productivity in your specific applications. Take the time to carefully evaluate your requirements and choose a mini or compact computer that meets the demands of your industrial tasks or semi-outdoor environments.


    Factors to Consider Small Computer Requirements
    Processing Power High-performance processors capable of handling complex applications
    Connectivity Options Various ports and interfaces to support seamless connectivity
    Overall Size Compact dimensions suitable for space-constrained environments
    Durability Rugged construction and resistance to harsh conditions
    Fanless Design Elimination of dust and debris risks
    Exposure to high humidity or concentration environments IP rating capabilities providing waterproof, dustproof, submersion capabilities, etc.


    Conclusion

    In conclusion, selecting a small computer that is suitable for industrial or semi-outdoor settings requires careful consideration of specific features and requirements. The compactness of the computer is crucial for space-constrained environments, allowing for easy installation and integration. Additionally, robustness and durability are essential, ensuring that the computer can withstand the harsh conditions often encountered in industrial or semi-outdoor settings.

    Wide temperature tolerance is another critical feature to look for, as it enables the computer to function reliably in extreme temperature variations. This is particularly important in outdoor applications where temperature fluctuations can be significant. Furthermore, opting for a fanless design can prevent issues caused by dust, dirt, or debris accumulation, improving the overall reliability and reducing maintenance requirements.

    By following the guidelines outlined in this article, readers can make informed decisions when selecting a small computer. Consider factors such as processing power, connectivity options, and overall size to ensure the computer meets the specific needs of the intended application. Prioritizing compactness, robustness, wide temperature tolerance, and a fanless design will contribute to the optimal performance and longevity of the small computer in demanding industrial or semi-outdoor environments.



    FAQ

    What are the important factors to consider when choosing a small computer for industrial applications or semi-outdoor environments?

    When selecting a small computer suitable for industrial tasks or semi-outdoor use, it is crucial to consider factors such as compactness, robust performance, wide temperature range, stability, and waterproof features. These attributes ensure the computer can withstand the demanding conditions often found in industrial settings or outdoor environments, while still delivering reliable performance.


    Why is a small industrial computer necessary for certain applications?

    Small industrial computers are essential for applications with limited space. These computers are designed with a compact form factor, allowing them to fit into constrained environments without compromising on performance. They are also built to withstand the harsh conditions commonly found in industrial settings, making them ideal for rugged environments.


    What features should I consider in a small computer for semi-outdoor use?

    When choosing a small computer for semi-outdoor use, it is important to prioritize features such as wide temperature tolerance, waterproof capabilities, and a fanless design. Wide temperature tolerance ensures the computer can operate reliably in varying weather conditions. Waterproof capabilities protect the computer from moisture and other environmental factors. A fanless design eliminates the need for cooling fans, reducing the risk of dust and debris damaging internal components and eliminating possible point of failure.


    What are the advantages of a rugged and fanless embedded computer?

    Rugged and fanless embedded computers offer several benefits for industrial or semi-outdoor use. Their rugged construction makes them withstand harsh conditions, including extreme temperatures, vibrations, and shocks. The fanless design eliminates the risk of fan failure and reduces maintenance requirements, as there are no moving parts to replace or clean. These computers are highly reliable and deliver consistent performance in challenging environments.


    How do I choose the right small computer for my specific needs?

    When selecting a small computer for your specific requirements, consider factors such as processing power, connectivity options, and overall size. Assess the computational demands of your intended applications and choose a computer with sufficient processing power to handle them. Ensure the computer has the necessary connectivity options to interface with your existing equipment. Additionally, consider the size and form factor that best fits your workspace or installation location.


    Related Product 1: - Please select Product -
    Related Product 2: - Please select Product -
    Related Product 3: - Please select Product -
    Related Product 4: - Please select Product -
    Related Product 5: - Please select Product -
    Related Product 6: - Please select Product -
    Related Product 7: - Please select Product -
    Related Product 8: - Please select Product -

    産業コンピュータでは、過酷な環境でシームレスな運用を実現するために安定性 が重要な要素となります。 安定性を維持する上で、大きな役割を果たすのが「放熱」です。しかし、放熱がなぜこれほどまでに重要なのか、考えたことはありますか?特に高温 の条件で、産業コンピュータの 性能信頼性にどう影響するのでしょうか?一部の産業コンピュータは他よりも 高温 環境への耐性が優れている理由は何でしょうか?今回は、産業コンピューティングの世界に入り、 放熱安定性の興味深い関係を探ってみましょう。


    主な要点:

    • 高温環境 で動作する産業コンピュータで安定性を維持するには、放熱が欠かせない要素となります。
    • • 放熱が不足していると、システム障害、部品の破損、全体的な性能低下につながります。
    • 発熱部品を均等にレイアウト し、表面積を最大限に確保した、効率的な放熱用の ファンレス冷却設計が、安定性と高性能に貢献します。
    • 産業用コンピュータの放熱性能はすべて備えているわけではなく、一見しただけではわからないことがあります。


    産業用コンピュータにおける放熱のコンセプトを理解する

    放熱は、コンピュータの部品が発生する熱を除去し、周囲空間へと拡散させる過程を指します。熱を発熱部品から効果的に除去し、安全な動作温度を維持するために、伝導と放熱表面積が関わってきます。

    ただし、適切に管理しなかったり、連続した過度の放熱に対処できない不良設計の場合、産業コンピュータの安定性と性能を劣化させることがあります。放熱が不足すると、部品の寿命が縮まり、全体的な信頼性が損なわれ、いずれはシステム障害につながる可能性もあるのです。

    放熱不足が理由で生じる問題:

    放熱の重要性を理解するために、産業コンピュータで放熱管理が不十分な場合に生じることのある問題を以下に挙げます:

    • システムの不安定化とクラッシュ
    • 部品の寿命の短縮
    • 処理性能の低下
    • 電気的故障のリスク増大

    これらの問題は、重要な産業プロセスにおいて、高価な修理費用、休止時間、中断の理由となります。このため、産業コンピュータは効率的な放熱機構を優先し、過酷な環境でも安定した高信頼性の動作を保証します。 「過熱を防いで、高価なシステム障害を避けるために、適切な温度管理が欠かせません。産業コンピュータは、安定性を維持して長期的な信頼性を保証するために、効果的な放熱を必要とします。」 産業コンピュータの放熱テクニック 産業コンピュータでは、放熱は安定性と性能に直接影響する重要な要素です。極端な温度と過酷な条件が普通に存在する厳しい環境では、効率的な放熱の重要性がさらに増します。 "



    産業コンピュータの放熱テクニック

    産業コンピュータでは、放熱は安定性と性能に直接影響する重要な要素です。極端な温度と過酷な条件が普通に存在する厳しい環境では、効率的な放熱の重要性がさらに増します。

    産業コンピュータで主に用いられるテクニックの一つは、ファンレス伝導冷却システムと放熱用ヒートシンクの組み合わせです。

    従来の組込み設計が用いる放熱ソリューションは、メーカーが利用する既存の市販マザーボードやモジュールに依存します。CPUソケット、メモリーモジュールのソケット、コンデンサなどはすべてPCBの同じ面に配置されており、部品の高さが様々に異なります。CPUが発する熱を除去するために、メーカーは部品間の高低差を補償する伝導性物質を中間に配置する必要があります。一般的な設計は、次のように多層で構成されています:

    • 5~15 W.m-1.K-1の熱伝導性を持つサーマルグリスまたはサーマルパッドの層が、CPUに統合されたヒートシンク(IHS)の上に配置されます。
    • 続いて、金属製のブロック(401 W.m-1.K-1の熱伝導性を持つ銅、または237 W.m-1.K-1の熱伝導性を持つアルミ)が中間材として機能し、高低差を解消します。
    • 最後に、より厚みがあり柔らかな別のサーマルパッド(5 W.m-1.K-1未満の熱伝導性)が外部ヒートシンクに直接接触し、周囲空間へ熱を放散します。

    ファンレスコンピュータは、従来型の冷却ファンなしで動作するよう設計されており、数々のメリットを提供します。まず、ファンが存在しないために、ノイズが除去され、ファンレスコンピュータはノイズに敏感な環境に適しています。続いて、空気が流れないために埃の堆積が最小限にとどまり、部品の損傷とシステム障害の危険を減らします。最後ですが重要な点は、ファンのブレードやボールベアリングは可動部品であり、壊れる可能性があります。このため、ファンレスシステムは障害点を実質的に解消します。

    比較表:放熱テクニック


    放熱テクニック メリット
    堅牢なパッシブ冷却
    • ノイズのない静音動作
    • 埃の堆積が最小限に抑制
    • 効率的な放熱管理
    • 過酷な環境で高い効果を発揮
    • 耐久性と信頼性を向上
    ファンを利用したアクティブ冷却 素早い放熱
    高度なヒートパイプ技術
    • 効率的な放熱
    • 熱伝導性の改善

    上記の表は、堅牢な産業用コンピュータで利用される様々な放熱テクニックを比較したものです。各テクニックは独自のメリットを提供し、専用システムで最適な放熱管理と安定性を実現します。



    Neousysの冷却テクニックが他社とは異なる点

    Neousysの放熱ソリューションは効率的に熱を逃がして周囲へ拡散させるとともに、部品を戦略的に配置して熱ソークによる干渉を避けます。簡素化された効果的な設計は放熱効率を最大限にするためカスタマイズされて微調整されます。これで、Neousysのファンレス組込みシステムは過酷な環境条件でも安定した動作を維持し、真の広範囲温度動作を実現します。Neousysのファンレス組込みシステムは、他社とは数々の方法で一線を画します:

    発熱部品を隔離。 Neousysの設計部門は、すべての発熱部品を上側の縁に沿って配置し、熱ソークの影響を避けながら、効率的な放熱を促進します。

    熱ソークを避けるために隔離して均等に配置。 発熱部品は慎重に間隔を空けて配置し、均等に置かれています。回路設計を内製するため、CPU、チップセット、イーサネットコントローラー、パワーチョークなどの発熱部品を適切な間隔を空けて配置し、熱ソークを避けつつ、ヒートシンクの面積をすべて活用できます。

    独自の超高効率な高級グレードのサーマルパッドを採用。 熱伝導性物質を何層も中に配置した一般的なファンレス組込みシステムと異なり、Neousysのファンレス組込みシステムは、発熱部品と外部ヒートシンクの間にわずか1層のサーマルパッドを直接配置しており、直接的かつ効果的な熱伝導を達成しています。

    一から見直された放熱設計。Neousysのファンレス組込みシステムは、放熱効率の最大化を最優先を目的に設計・調整されています。Neousysのファンレスシステムでは、機構設計と放熱効率が相互を補佐する仕組みとなっており、システムの熱伝導率は常に最高に保たれます。このため、Neousysのファンレス組込みシステムはすべて、真の広範囲温度動作を実現しており、24時間無休で-25°C~70°Cの範囲で動作します。放熱効率が非常に高い設計を通じ、システム動作が安定し、電子部品の寿命が延長されます。


    結論 - 適切な産業用コンピュータの選定

    産業用コンピュータの選定は、演算処理能力、温度範囲、設置スペース、環境条件などの要素に依存します。温度範囲は放熱能力と対を成し、動作の安定性を示します。効率的な放熱技術は最適な温度を維持し、性能劣化を防いで寿命を延長させます。

    過酷な環境で、産業用コンピュータの安定性と性能を維持する上で、放熱が重要な役割を果たします。本記事では、極端な温度が原因で生じるリスクを最小限に留め、安定した動作を保証するために、こうしたシステムで効果的な放熱管理が不可欠であること強調しました。

    厳しい環境で産業用コンピュータ選定する場合では、高効率な放熱能力を持つ堅牢設計を優先するることが不可欠です。システム冷却設計や耐久性部品など、こうした設計を通じて、産業コンピュータは過酷な条件下でも安定性と高効率を維持して動作できるようになります。 極端な温度に耐え、熱を効果的に放散できる高信頼性のシステムを購入すれば、長期的な動作の安定性が大きく向上し、システム障害や部品の故障リスクを最小限に抑えることが可能になります。



    よくある質問

    産業用コンピュータでの放熱とは

    産業用コンピュータでの放熱は、システム動作時に発生した熱を放散したり、除去する過程を意味します。冷却テクニック、レイアウト設計、部品選定を通じて最適な温度を維持し、コンピュータの安定性と性能を劣化させる過熱を防ぎます。


    産業用コンピュータの安定性に放熱が重要な理由

    過度の熱はシステム障害、部品の破損、性能劣化の原因となるため、産業用コンピュータでの安定性を維持するには放熱が不可欠です。産業用コンピュータは高温環境で動作することが多いため、安定動作を保証するには効果的な放熱管理が欠かせません。


    産業用コンピュータで使用される放熱テクニックの例

    産業用コンピュータは、熱を効果的に管理して制御するために、様々な放熱テクニックを使用します。よく利用されるテクニックには、ノイズを解消して埃の堆積を最小限に留められる、ファンレス冷却システムの使用があります。また、高効率な放熱能力を持つ堅牢設計、発熱部品の均等な分散配置、高効率なヒートシンクも効果的な放熱を支援し、過酷な環境での安定動作を保証します。


    堅牢な産業用コンピュータにおける放熱が性能に与える影響

    放熱は堅牢な産業用コンピュータで最適な性能を保つために不可欠な要素です。効率的な放熱を通じて、システムは極端な温度下でも安定動作し、性能低下の原因となる過熱やサーマルスロットリングを防ぎます。しっかりした冷却システムと高耐久性部品を採用した堅牢設計は放熱能力を改善し、高効率な連続動作を実現します。


    高温環境下のアプリケーションで最適な産業コンピュータを選定方法

    広範囲温度アプリケーションに産業用コンピュータを選定する場合、放熱と安定性を優先させる必要があります。温度範囲の仕様、冷却能力、システムの堅牢性などの要素を考慮してください。選定するコンピュータが厳しい条件に耐え、安定動作を維持するための効率的な放熱機構を備えていることを確認することが重要です。多くのブランドや設計が市販されていますが、すべての産業用コンピューターが同等に作られているわけではありません。このため、様々なシステムを試してテストした方々のお勧めを見れば、候補を絞れるはずです。


    Related Product 1: - Please select Product -
    Related Product 2: - Please select Product -
    Related Product 3: - Please select Product -
    Related Product 4: - Please select Product -
    Related Product 5: - Please select Product -
    Related Product 6: - Please select Product -
    Related Product 7: - Please select Product -
    Related Product 8: - Please select Product -

    Revenue Report



    2025 Monthly Revenue Report

    (Unit: Thousands of New Taiwan Dollars)
    Month Consolidated Revenue MoM Growth Rate Consolidated Net Revenue Annual Growth Rate
    01 126,258 6.20% 126,258 6.20%
    02 128,339 68.19% 254,597 30.43%
    03 163,772 13.73% 418,369 23.34%
    04 141,852 38.55% 560,221 26.87%
    05 117,400 -11.56% 677,621 17.99%
    06 159,914 36.39% 837,535 21.11%
    07 149,603 8.25% 987,138 18.96%
    08 167,389 64.85% 1,154,527 23.97%
    09
    10
    11
    12



    Related Product 1: - Please select Product -
    Related Product 2: - Please select Product -
    Related Product 3: - Please select Product -
    Related Product 4: - Please select Product -
    Related Product 5: - Please select Product -
    Related Product 6: - Please select Product -
    Related Product 7: - Please select Product -
    Related Product 8: - Please select Product -

    (In Thousands of New Taiwan Dollars, Except Book Value Per Share and Earnings per share)
    Year 2024 2023 2022 2021
    Condensed Financial
    Position Statement
    Total Asset 1,798,149 1,106,216 920,127 692,563
    Total Liabilities 831,126 251,840 285,753 285,578
    Total Equity 967,023 854,376 634,374 406,985
    Book Value per Share 37.75 33.43 28.03 20.07
    Condensed Consolidated
    Income Statement
    Operating Revenue 1,445,332 1,054,805 1,281,909 976,885
    Profit From Operations 217,722 134,245 227,220 168,414
    Profit Before Income Tax 248,016 135,472 235,714 162,992
    Earnings per Share 7.57 4.51 8.15 5.97



    Main menu