Neousys Technology

Date: 2015/3/23

Rev. 1.0

RD : Amy Chen

Product Information:

System Core	Specification		
Product	NUVO-3616VR		
Motherboard Version	Rev. A1		
Processor Type	Intel ® Core ™ i7-3610QE CPU@2.30GHZ		
Mamanu	2x SO-DIMM socket for DDR3-1333 8GB		
Memory	(Wide Temp.)		
Storage	SATA SSD 64GB		
Graphic	Integrated Intel® HD Graphics		
Operating System	Windows7 Ultimate Edition build 7600 (32bit)		
BIOS Version	NV36A001Build150213		

Test Item:

- High Temperature/ Humidity Burn-In Test
- Low Temperature Cold-Boot Test
- Temperature Cycle Test

Test Equipment:

Chamber Configuration			
Name	Programmable Temperature & Humidity Chamber		
Brand	KSON		
Model	THS-A6T-150		
Serial No.	A0420		

A. High Temperature/Humidity

Burn-In Test

Description:

Test DUT in high temperature and humidity environment, verify if there is any BSOD, reboot, or hang observed during testing.

Test Method/ Specification:

Operating: Execute "BurnIn Test V7.1 Pro"

Condition		
Temperature	65°C	
Humidity	90%RH	
Airflow	0.5 m/s	
I/O Function		
POE*	 IPC: IVIS-200 IP-Camera: ZAVIO-F731E IP-Camera: ZAVIO-F731E IP-Camera: ZAVIO-F521E IP-Camera: ZAVIO-F521E Switch: HP PS1810-8G Switch 	
COM Port 1~2	RS232 Loopback	
USB Port 1~2	Keyboard & Mouse	

Test Procedure:

1. Run BurnIn Test to stress all I/O, including CPU.

Loading		
СРИ	100%	
2D Graphic	100%	
3D Graphic	100%	
COM Port	100%	
Video	100%	

2. Check DUT after test:

Examine the appearance of DUT by visual check and perform functional check (examine whether of specified test items could work normally or not) after test.

Expected Result:

ER2. Appearance check: No visible damage.

ER2. Functional check: No BSOD, Reboot, hang is observed. Each I/O interface

works properly.

Test	Result	Date	Comments
1.High Temperature/Humidity Test Input Voltage: 32VDC in Duration: 65 hours	Pass	2015/03/23	
2.High Temperature/Humidity Test Input Voltage: 8VDC in Duration: 24 hours	Pass	2015/03/24	

• Test Photos:

B. Low Temperature Cold-Boot Test

Description:

This test will use relay card to switch DUT on/off and check boot or not by serial port in low temperature environment.

Test requirement:

- Server: PC with relay card and software Boot_DVT.
- DUT: DOS bootable USB flash (outside the chamber).
 Edit "autoexec.bat" to start command RS232.exe automatically after booting up.

RS232.exe: send out "I am good!" from COM1 & COM2

Test Method/ Specification:

Operating: <u>Continuous execute Power ON/ OFF (execute diagnostic software</u> "Boot DVT")

Condition		
Temperature	-33°C	
Humidity	%RH	
Airflow	0.5 m/s	

Test Procedure:

1. Execute software "Boot_DVT".

Setting				
	30 seconds			
Boot wait	(Power on DUT, wait 30 seconds, and			
	then power off DUT)			
	300 seconds			
Boot interval	(Power off DUT, wait 300 seconds,			
	and then power on DUT.)			

- 2. Power on DUT via relay card.
- 3. DUT boot up and send out message" I am good! " from COM port.
- 4. Server check if message received and power off DUT. And Server records Pass or Fail.
- 5. Power off DUT via relay card.
- 6. Wait for a specified time, repeat Step#2 ~ 5.
- 7. Check DUT after test:

Examine the appearance of DUT by visual check and perform functional check (examine whether the booting function Power ON/ OFF of DUT could work normally or not) after test.

Expected Result:

ER7. Appearance check: No visible damage.

ER7. Functional check: There is no fail record after test.

Test	Result	Date	Comments
Low Temperature Test			
Input Voltage: 12VDC in	Pass	2015/03/25	ON/ OFF Cycle: 260
Duration: 24 hours			

Test Photos:

C. Temperature Cycle Test

Description:

This test will use relay card to switch DUT on/off and verify DUT can boot in specified temperature range.

• Test requirement:

- Server: PC with relay card and software Boot_DVT.
- DUT: DOS bootable USB flash (outside the chamber).
 Edit "autoexec.bat" to start command RS232.exe automatically after booting up.

RS232.exe: send out "I am good!" from COM1 & COM2

Test Method/ Specification:

Operating: <u>Continuous execute Power ON/ OFF (execute diagnostic software</u> "Boot DVT")

Condition					
Temperature Curve	Interval	Temperature (°C)	Humidity (%RH)	Time	
3	1	25	25	5min	
2	2	25→60	25→90	14hr30min	
	3	60	90	5min	
4	4	60→-40		42hr	
6	5	-40		5min	
	6	-40→-10		13hr	
5	7	-10		5min	

Test Procedure:

1. Execute software "Boot_DVT".

Setting				
	30 seconds			
Boot wait	(Power on DUT, wait 30 seconds, and			
	then power off DUT)			
	240 seconds			
Boot interval	(Power off DUT, wait 240 seconds,			
	and then power on DUT.)			

2. Power on DUT via relay card.

- 3. DUT boot up and send out message" I am good! " from COM port.
- 4. Server check if message received and power off DUT. And Server records Pass or Fail.
- 5. Power off DUT via relay card.
- 6. Wait for a specified time, repeat Step#2 \sim 5.
- 7. Check DUT after test:

Examine the appearance of DUT by visual check and perform functional check (examine whether the booting function Power ON/ OFF of DUT could work normally or not) after test.

Expected Result:

ER7. Appearance check: No visible damage.

ER7. Functional check: There is no fail record after test.

Test	Result	Date	Comments
Temperature Cycle Test			
Input Voltage: 8V	Pass	2015/03/06	ON/ OFF Cycle: 917
Duration: 69.8Hr			

Test Photos:

3. Temperature Cycle Test

4. Temperature Cycle Test